
Parallel multigrid smoothing: polynomial versus Gauss–Seidel

Mark Adams a,1, Marian Brezina b,2, Jonathan Hu a,1, Ray Tuminaro a,*,1

a Department of Computational Mathematics and Algorithms, Sandia National Laboratories, P.O. Box 969,

MS 9217, Livermore, CA 94551, USA
b Department of Applied Mathematics, University of Colorado at Boulder, Campus Box 526, Boulder, CO 80309, USA

Received 22 October 2002; received in revised form 3 March 2003; accepted 17 March 2003

Abstract

Gauss–Seidel is often the smoother of choice within multigrid applications. In the context of unstructured meshes,

however, maintaining good parallel efficiency is difficult with multiplicative iterative methods such as Gauss–Seidel.

This leads us to consider alternative smoothers. We discuss the computational advantages of polynomial smoothers

within parallel multigrid algorithms for positive definite symmetric systems. Two particular polynomials are considered:

Chebyshev and a multilevel specific polynomial. The advantages of polynomial smoothing over traditional smoothers

such as Gauss–Seidel are illustrated on several applications: Poisson�s equation, thin-body elasticity, and eddy current

approximations to Maxwell�s equations. While parallelizing the Gauss–Seidel method typically involves a compromise

between a scalable convergence rate and maintaining high flop rates, polynomial smoothers achieve parallel scalable

multigrid convergence rates without sacrificing flop rates. We show that, although parallel computers are the main

motivation, polynomial smoothers are often surprisingly competitive with Gauss–Seidel smoothers on serial machines.

� 2003 Elsevier Science B.V. All rights reserved.

AMS: 76D05; 76D07; 65F10; 65F30

Keywords: Multigrid; Gauss–Seidel; Polynomial iteration; Smoothers; Parallel computing

1. Introduction

Multigrid methods (e.g. [9,11,20]) are among the most efficient iterative algorithms for solving the linear

systems associated with elliptic partial differential equations. The basic idea of multigrid is to capture errors

Journal of Computational Physics 188 (2003) 593–610

www.elsevier.com/locate/jcp

*Corresponding author. Tel.: +1-925-294-2564; fax: +1-925-294-2234.

E-mail addresses: mfadams@ca.sandia.gov (M. Adams), brezina@newton.colorado.edu (M. Brezina), jhu@sandia.gov (J. Hu),

tuminaro@ca.sandia.gov, rstumin@sandia.gov (R. Tuminaro).
1 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States

Department of Energy under Contract DE-ACO4-94AL85000.
2 This work was sponsored by the National Institute of Health under Grant No. 1-R01-EY12291-01, the National Science

Foundation under Grant No. DMS-0084438, and the Department of Energy under Grant Nos. DE-FG03-94ER25217 and DE-FC02-

01ER25479.

0021-9991/03/$ - see front matter � 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0021-9991(03)00194-3

mail to: mfadams@ca.sandia.gov

by utilizing multiple resolutions in the iterative scheme. High-energy (or oscillatory) components are ef-

fectively reduced through a simple smoothing procedure, while the low-energy (or smooth) components are

tackled using an auxiliary lower-resolution version of the problem (coarse grid). Since the error after

smoothing should lack the high-energy components, it is generally assumed that this error can be well-

approximated using a coarser resolution. Thus, the residual equation is transferred to the coarser level, and

its solution is used to correct the fine-level solution. The idea is applied recursively on the next coarser level.

The Gauss–Seidel method has long been the smoother of choice within multigrid schemes. It is effective

on problems of practical interest, and on model problems its superior smoothing characteristics cost little to
implement in the serial computation context [5]. While numerically attractive, constructing efficient parallel

true Gauss–Seidel algorithms is challenging as is shown in Sections 2 and 5. As an alternative, Processor

Block (or local) Gauss–Seidel is often used. Here, each processor performs Gauss–Seidel as a subdomain

solver for a block Jacobi method. While Processor Block Gauss–Seidel is easy to parallelize, the overall

multigrid convergence rate usually suffers and can even lead to divergence if not suitably damped, as

discussed in Section 2.

Given the parallel Gauss–Seidel difficulties, we consider smoothing schemes based on a polynomial it-

eration of the form:

xðmþ1Þ ¼ xðmÞ þ
X

06 j6 n

ajAjðb� AxðmÞÞ ð1:1Þ

to solve the positive definite symmetric system

Ax ¼ b

with initial guess xð0Þ. The aj are the polynomial coefficients and are precomputed based on some knowledge

of the spectrum of A. To simplify the description, it is always assumed in this paper that the matrix A has

been scaled so that all diagonal entries are one. However, symmetric scaling is easily incorporated into (1.1)

and is used within our multigrid codes. The case n ¼ 0 corresponds to the well known damped-Jacobi

method. Using polynomial smoothers with n > 0 as a solver has been suggested in [25]. Polynomial
smoothers within multigrid methods have also been known for quite some time. Multi-stage Runge–Kutta

methods [16,17,26], for example, enjoy significant success within the computational fluid dynamics com-

munity. These methods arise by introducing an artificial time-derivative to the equation obtained by dis-

cretization of hyperbolic or almost hyperbolic partial differential equations. For symmetric problems,

Chebyshev polynomials have also been known for quite some time. They are discussed in works as early as

[5] and [19]. However, these papers recommend Gauss–Seidel methods over polynomial methods. In fact,

our central thrust is to dispell a perception that polynomial smoothers are computationally inferior to

Gauss–Seidel. This previous perception was supported by comparing convergence rates and floating point
operations on simple structured mesh problems. However, the comparisons between Gauss–Seidel and

polynomial methods are completely different when unstructured meshes are considered (where multi-color

Gauss–Seidel is problematic) on modern CPUs (where multi-color Gauss–Seidel flop rates can be low)

within a parallel simulation (where high Gauss–Seidel efficiency may be harder to obtain).

We focus on two particular polynomials as a competitive replacements for a Gauss–Seidel iteration

within an unstructured parallel multigrid algorithm. In Section 3, we describe two specific polynomials and

motivate why they may be appropriate within a multigrid solver. Section 4 analyses the performance of

polynomial and Gauss–Seidel methods. Finally, Section 5 compares the polynomial smoothers with both
Parallel Block Multi-colored Gauss–Seidel and processor-based Gauss–Seidel on three different compu-

tational problems coming from Poisson�s equation, Maxwell�s equations, and elasticity. While the primary

focus is on parallel performance, surprisingly, the polynomial methods are usually superior with Gauss–

Seidel in serial computations as well.

594 M. Adams et al. / Journal of Computational Physics 188 (2003) 593–610

2. Parallel Gauss–Seidel smoothing

The Gauss–Seidel iteration is widely used as a multigrid smoother because it is effective on a variety of

common model problems. The Gauss–Seidel method can be succinctly described by

xðmþ1Þ ¼ xðmÞ þ L�1ðb� AxðmÞÞ;

where L is the lower triangular portion of the matrix A. The Gauss–Seidel iteration proceeds by updating

one unknown at a time. The kth unknown is modified so that the kth equation is satisfied exactly using the

most up-to-date approximation for the other unknowns. The numerical convergence of the Gauss–Seidel

method depends on the order in which the unknowns are updated. In particular, red-black ordered Gauss–

Seidel can provide for improved convergence rates (see Table 1 for convergence properties of several

common smoothers). It should be further noted that the damped version of the Gauss–Seidel method is

referred to as successive over relaxation (SOR). In this paper, we consider only Gauss–Seidel since choosing
an optimal SOR damping parameter can be difficult for many problems of practical interest and is not

generally used in multigrid smoothers.

To employ the method within a conjugate-gradient preconditioner, we use symmetric Gauss–Seidel to

maintain symmetry. Symmetric Gauss–Seidel processes the equations in the reverse order of the previous

Gauss–Seidel application. It should be noted that there is no convergence benefit to a symmetric red-black

Gauss–Seidel solver over just a red-black Gauss–Seidel solver on a 2-cyclic matrix [12]. Our situation,

however, is significantly different in that we use Gauss–Seidel as a smoother within a multigrid precondi-

tioner. This ‘‘symmetric’’ Gauss–Seidel smoother actually uses a single forward Gauss–Seidel sweep within
the pre-smoother and a single backward Gauss–Seidel sweep within the post-smoother. Thus, unlike a

symmetric Gauss–Seidel solver, a coarse grid correction occurs between the last forward sweep color and

the first backward sweep color. Further, our parallel Gauss–Seidel smoother corresponds to a block col-

oring where lexicographical Gauss–Seidel is employed within the blocks. Finally, symmetric Gauss–Seidel

smoothing follows standard practice of maintaining preconditioner symmetry for a symmetric problem

thereby allowing conjugate-gradient to be applied.

Though Gauss–Seidel smoothers typically yield good multigrid convergence properties, they lose their

luster on unstructured grids and modern parallel computers. Specifically, parallelization can be obtained by
identifying groups of unknowns that are independent from each other. Unknowns within a group (or color)

can then be updated simultaneously. Unfortunately, the elegant simplicity of structured grid multi-color

Gauss–Seidel is lost on 3D unstructured finite element applications as the number of required colors

Table 1

2-Level multigrid on 255� 255 structured grid Laplacian with Dirichlet boundary conditions

Smoother Iterations Convergence rate

1 Lex. Gauss–Seidel 28 .384

2 Lex. Gauss–Seidels 16 .184

3 Lex. Gauss–Seidels 13 .112

1 Red-black Gauss–Seidel 20 .246

2 Red-black Gauss–Seidels 11 .067

3 Red-black Gauss–Seidels 10 .049

1 Damped Jacobi 53 .596

2 Steps of damped Jacobi 27 .36

2nd order Chebyshev 19 .216

3rd order Chebyshev 13 .120

Convergence determined when the initial residual is reduced by 1012. Convergence rate is the ratio of the last two residuals.

Random initial guess and zero right hand side.

M. Adams et al. / Journal of Computational Physics 188 (2003) 593–610 595

increases dramatically. Additionally, multi-color ordering possesses pathological cache behavior as the

solution vector is almost completely swept through for each color. To avoid parallelization difficulties, a

processor-localized Gauss–Seidel is often employed instead of a true Gauss–Seidel method. In this case,

however, multigrid convergence rates usually suffer. The rest of this section discusses the parallel Gauss–

Seidel methods that are used in this study: a recent Parallel Block Multi-color Gauss–Seidel algorithm

(Section 2.1) and Processor Block Gauss–Seidel (Section 2.2).

2.1. Parallel block multi-color Gauss–Seidel

We are aware of only one efficient parallel true Gauss–Seidel algorithm for unstructured problems,

developed by Adams [1]. This algorithm takes advantage of the domain decomposition provided by the

distribution of the stiffness matrix that is common in parallel computing. These domains are generally
chosen to reduce communication required by common operations such as residual calculation. If processor

subdomains are relatively large, they will contain many interior nodes (i.e., nodes that can be pro-

cessed without communication) relative to the number of boundary nodes (i.e., nodes requiring off processor

updates in Gauss–Seidel). The general idea is to order nodes such that interior nodes are processed while

waiting for communication necessary to process boundary nodes. This algorithm first colors the processors

and uses an ordering of the colors to provide a processor inequality operator (this ordering is reversed to

symmetrize the algorithm). Each processor partitions its nodes into interior and boundary nodes. Boundary

nodes are further partitioned into three sets:
• Bot: requires only communication with higher processors,

• Top: requires only communication with lower processors,

• Mid: all remaining boundary nodes.

Interior nodes are partitioned into two sets: Int1 and Int2 so as to satisfy

jInt1j þ jTopj � jInt2j þ jBotj; ð2:1Þ

where j 	 j measures the cost to apply Gauss–Seidel to the equations in the set. This cost is approximated by

the number of non-zeros in the equations. Int1 and Int2 are each partitioned into two additional sets (Int1a,
Int1b, Int2a and Int2b) to allow for overlapping computation with the two primary communication steps in
this algorithm.

Fig. 1 illustrates the partitions of a 2D, four processor problem where the processor colors are repre-

sented with integers (i.e., 1–4). Once nodes are partitioned, the idea of the algorithm is to process first Top

nodes, then Mid nodes, and then Bot nodes. While communication that is needed for these boundary nodes

occurs, interior nodes are processed. Fig. 2 shows a schematic time line for this algorithm corresponding to

the model problem in Fig. 1. The primary communication steps are indicated with arrows. Eq. (2.1) insures

that all processors update the Mid nodes at roughly the same time (i.e., after half the work has been

completed). Note that this is a ‘‘soft’’ synchronization point. In order to use the multigrid method as a
preconditioner for a symmetric Krylov method, we need to ensure symmetry of the smoother. To sym-

metrize the algorithm, the sets Int1 and Int2 are interchanged as well as the sets Top and Bot, and the

equations in each partition are processed in reverse order, see [1] for more details.

2.2. Processor block Gauss–Seidel

To avoid complexities associated with parallel Gauss–Seidel method and the soft synchronization points

required for any true parallel Gauss–Seidel implementation, it is possible to combine Gauss–Seidel with

Jacobi�s method. This compromise approach is commonly used in practice, sometimes with interprocessor

damping to account for the overall Jacobi character of the method (see for example [13]). Specifically, each

596 M. Adams et al. / Journal of Computational Physics 188 (2003) 593–610

processor performs a Gauss–Seidel iteration with the exception that previous iteration values are used for

all off-processor unknowns (unknowns computed on other processors). We write this Processor Block

Gauss–Seidel iteration as

xðmþ1Þ ¼ xðmÞ þ block diagðLÞ�1ðb� AxðmÞÞ;

where

block diagðLÞi;j ¼
0 if i and j are on different processors;
ai;j if i and j are on the same processor:

�

This can be viewed as an additive Schwarz domain decomposition method where the subdomain solver is

one iteration of Gauss–Seidel.

While Processor Block Gauss–Seidel method is perfectly parallel, multigrid convergence is usually slower

than with true Gauss–Seidel smoothing. In fact, multigrid might converge acceptably with Gauss–Seidel

smoothing but diverge dramatically with Processor Block Gauss–Seidel. One transparent example of this

phenomenon occurs when a single unknown is assigned to each processor. In this case, Processor Block
Gauss–Seidel is equivalent to undamped Jacobi which is unsuitable as a multigrid smoother. While dra-

matic divergence might seem unlikely when only a few processors are employed, this is not necessarily true.

We have observed non-convergence for both Maxwell�s equations and elasticity applications with only four

processors (where multigrid with true Gauss–Seidel smoothing converges acceptably). This poor perfor-

mance mirrors the poor performance of Jacobi�s method. Specifically, Maxwell�s equations and elasticity

commonly yield symmetric positive definite operators that are not M-matrices. Unlike M-matrices, the

corresponding spectral radius of the diagonally scaled operator, qðD�1AÞ, is significantly greater than two.

Fig. 2. Time line of model 2D problem.

Fig. 1. Sample partitioning for 2D mesh with four processors.

M. Adams et al. / Journal of Computational Physics 188 (2003) 593–610 597

This means that undamped Jacobi iteration (without multigrid) is divergent, i.e., qðI � D�1AÞ > 1. Given

that Processor Block Gauss–Seidel is a combination of Jacobi and Gauss–Seidel methods, its convergence

problems are not really surprising.

Simple non-M matrix examples exhibiting divergence of the Processor Block Gauss–Seidel method can

be constructed. For example, consider a uniform grid on a unit square with the following grid stencil:

�:5 :99 �:5
�1: 2:03 �1:
�:5 :99 �:5

0
@

1
A

and periodic boundary conditions. The corresponding matrix is a discrete version of the anisotropic

problem

uxx þ e1uyy þ e2u ¼ f ; 0 < e1; e2
 1: ð2:2Þ

The above stencil yields a �strange� discretization of (2.2). This discretization does not correspond to any

standard scheme and has been constructed artifically to demonstrate a point. In particular, the resulting

matrix is positive definite symmetric (but not an M-matrix) and thus Gauss–Seidel method is guaranteed to

converge. However, Jacobi�s method is divergent and Processor Block Gauss–Seidel (without multigrid) is

also divergent when we associate one subdomain with each vertical grid line. In fact, Processor Block

Gauss–Seidel is even divergent with only three subdomains: one corresponding to the middle grid line (i.e.,
x ¼ :5), one corresponding to all points left of the middle grid line and one corresponding to all points right

of the middle grid line. For strongly anisotropic problems such as these, line relaxation should be employed

within multigrid algorithms. When each vertical line corresponds to a subdomain, vertical line Processor

Block Gauss–Seidel is identical to vertical line block Jacobi which is unsuitable as a smoother (though it is

not divergent). It is possible to analyze this system with Fourier analysis. We forego this analysis here as it

is somewhat tedious and provides no additional insight.

Finally, it should be noted that it is possible to damp Processor Block Gauss–Seidel method to obtain

convergence. However, it is not clear how best to do this. Ultimately, the optimal choice depends on
processor and partitioning information. This implies that damping will depend on the number of processors

and so convergence rates will also depend on the number of processors.

3. Polynomial smoothers

Motivated by the parallel Gauss–Seidel difficulties discussed in Sections 2.1 and 2.2, we investigate

polynomial smoothers as an alternative. Consider the iterative procedure

xðmþ1Þ ¼ xðmÞ þ pðAÞðb� AxðmÞÞ

to solve the positive definite symmetric problem 3

Ax ¼ b

with initial guess xð0Þ, exact solution x�, and with

pðAÞ ¼
X

06 j6 n

ajAj:

3 To simplify the presentation, it is assumed that A is scaled so that all diagonal entries are one. It is quite easy to incorporate

symmetric diagonal scaling within a polynomial smoother.

598 M. Adams et al. / Journal of Computational Physics 188 (2003) 593–610

The error propagation of the above method is defined by

eðmþ1Þ ¼ qðAÞeðmÞ;

where

qðAÞ ¼ I � pðAÞA; eðmÞ ¼ xðmÞ � x�:

To use the above iteration as a multigrid smoother, the error reduction properties of the polynomial qðAÞ
must be complementary to those of the coarse grid correction. For elliptic problems, this typically means

damping high frequency errors.

3.1. Chebyshev polynomials

To motivate the use of smoothing based on Chebyshev polynomials, consider an idealized coarse grid

correction. Let the eigenvalue/eigenvector pairs of A be given by

ðk1; x1Þ; ðk2; x2Þ; . . . ; ðkn; xnÞ;

where

k1 6 k2 6 	 	 	 6 kn:

Choose a k� to split the eigenvalues into two groups: low energy (kk < k�) and high energy (kk P k�).
Assume that the multigrid coarse grid correction, CmgðAÞ, completely annihilates error associated with small

eigenvalues and does not affect error associated with large eigenvalues:

CmgðAÞxk ¼
0 if kk < k�;
xk if kk P k�:

�

The ideal smoother is then given by a Chebyshev polynomial qðzÞ that minimizes over the range

k�6 z6 kn subject to the constraint that qð0Þ ¼ 1. A jth degree Chebyshev polynomial has the property

that it has the smallest maximum amplitude over an interval of all jth degree polynomials. Computing

the coefficients of a Chebyshev polynomial involves simple recurrences using the two eigenvalues defining

the interval: k� and kn. The resulting smoother closely resembles the Chebyshev semi-iterative method to

accelerate a Jacobi iteration. However, in this context the Chebyshev method is used only to damp error

over the high frequencies. It is easy to show that the associated kth degree polynomial, qðxÞ, damps high

frequency error by at least lk (i.e., the maximum polynomial amplitude over the high frequency interval
is lk) where

l0 ¼ 1;

l1 ¼
kn � k�

kn þ k�
;

lk ¼
l1lk�1lk�2

2lk�2 � lk�1l1

kP 2:

If the idealized coarse grid correction is a good approximation to the actual multigrid coarse grid

correction, lk should accurately approximate the actual multigrid convergence. This is the basis of
classical multigrid smoothing analysis [5]. We omit the details and refer the interested reader to one of

the many references on the Chebyshev semi-iterative method and on Chebyshev polynomials, e.g., [10,

15,25].

M. Adams et al. / Journal of Computational Physics 188 (2003) 593–610 599

3.2. MLS: multilevel smoother polynomial

The MLS smoother is based on a combined effect of two different smoothing procedures which are

constructed to complement each other on the range of the coarse grid correction. Let us denote these

procedures by lðÞ and lðÞ. One iteration of their application to the system Alx ¼ bl is given by

x l ðAl; bl; xÞ and x l ðAl; bl; xÞ; respectively. Typically, lðÞ is a pre-smoother while lðÞ is a post-

smoother within a multigrid iteration. When multigrid preconditioning is done for a conjugate gradient

method, x l ðAl; bl; l ðAl; bl; xÞÞ is both the pre-smoother and post-smoother.

The procedures lðÞ and lðÞ are constructed so that that their error propogation operators, Sl and ŜSl,
respectively, have certain optimum properties. Specifically, Sl ¼ SlðAlÞ is a polynomial of degree d in Al
such that the expression .ðS2

l AÞ is minimized subject to the constraint SlðHÞ ¼ I where H denotes the zero

matrix. A recurrence relationship for Sl of degree d > 1 can be found in [6,23]. A more convenient direct

construction in terms of a transformed Chebyshev polynomial can be found in [8]:

Sl ¼ p1ðAlÞ
 I
�
� 1

r1
Al

�
. . . I

�
� 1

rd
Al

�
; ð3:1Þ

where rk ¼ .ðAlÞ
2
ð1� cos 2kp

2dþ1Þ; k ¼ 1; . . . ; d: Once Sl is defined, we can construct ASl ¼ S2
l Al and define

ŜSl ¼ p2ðAlÞ
 I � x
�..ðASl Þ

ASl ; x 2 ð0; 2Þ;

where �..ðX Þ denotes an upper bound on the spectral radius of a matrix X . For all results in this paper x is

set to one. This completes the specification of the MLS polynomial.

The precise details concerning this choice of polynomial is given in [6] where the smoother was first

developed in conjunction with the smoothed aggregation multigrid. Here, we give a brief overview of the

relevant material in [6]. In smoothed aggregation multigrid, the polynomial Sl is also used as a prolongator

smoother. Prolongator smoothers take simple grid transfer operators and smooth them to produce im-
proved transfer operators

Illþ1 ¼ SlP llþ1; ð3:2Þ

where l (lþ 1) denotes the fine (coarse) level. P llþ1 are the simple transfer operators referred to as tentative

prolongators. They are obtained by a generalized aggregation procedure [24] and have the property
that ðPllþ1Þ

TPllþ1 ¼ I . The coarse level matrices are then constructed in the variational multigrid

fashion,

Alþ1 ¼ ðIllþ1Þ
TAlIllþ1: ð3:3Þ

Using (3.1) as a prolongator smoother assures that the coarse level matrix based on Illþ1 has the smallest

spectral radius of all matrices ApðAÞ2 over all polynomials pðxÞ of degree d such that pð0Þ ¼ 1. In this sense,
the smoothing effect produced by Sl is theoretically optimal. We note that the theory presented in [21]

requires such a minimization in order to derive convergence rate estimates while the computational ex-

periments justify such a choice practically.

The MLS smoother has been described and analyzed in the two-level context with d P 1 in [6,23].

The favorable two-level performance and analysis of [21,23] have served as a heuristic motivation

for practically extending the application of MLS from the two-level to the multilevel environment.

We note that the MLS smoother was first used in the multilevel context in the SAMISdat(AMG)

code [7].
Given the definition of smoothing procedures l; l, the definition of coarse level matrices (3.3) and

transfer operators (3.2), the two-level multigrid error propagation operator can be written as

600 M. Adams et al. / Journal of Computational Physics 188 (2003) 593–610

E ¼ ŜSðI � SPðPTSASP Þ�1PTSAÞS:

Here we have dropped the level subscripts on all the operators. We note that matrices S; ŜS are both

symmetric and A-symmetric and commute both with A and with each other. Hence we can easily es-

timate

kEkAS 6 max
x2KerðPTASÞnf0g

kŜSSxkAS 6 max
x2KerðPTASÞnf0g

min
kSxkAS
kxkAS

;
kŜSxkAS
kxkAS

()
:

Therefore, convergence properties will be bounded by the more effective of the smoothers , . In fact, a

stronger result can be proved showing that the effect of the smoother increases with diminishing effect of

smoother :

kŜSxk2AS
kxk2AS

6 1� kSxk
2
AS

kxk2AS
xð2� xÞ

K
8x 2 KerðPTASÞ n f0g;

where K is a constant depending on the approximation property provided by the tentative prolongator P ,
which is used in deriving the latter estimate. In that sense, we can view the smoothers defined by S; ŜS as not
only complementing each other, but at the same time being intimately related to the selection of coarse

spaces. Whenever smoother converges very slowly on the range of the coarse-grid correction, convergence

of should improve, and vice versa. While derived for the smoothed aggregation multigrid, the MLS

smoother is not restricted to this multigrid scheme. In Section 5, results are given with the MLS smoother

and geometric multigrid.

3.3. Eigenvalue estimates

The main disadvantage of polynomial methods is that they require extreme eigenvalues of the system.

This is a well-known problem associated with the Chebyshev semi-iterative method. When used as a stand-

alone iterative solver, it requires the lowest eigenvalue which is often not available nor practical to compute.

However, this is not an issue for smoothers. The MLS smoother does not need a lower eigenvalue estimate
and the Chebyshev smoothers need an estimate of the lower end of the high energy modes. In fact, it is

possible to simply divide the largest eigenvalue by a constant factor (e.g., 30). This fraction should be

related to how rapidly coarsening occurs within the multigrid method. We note, however, that multigrid

convergence does not seem very sensitive to this estimate. These lower eigenvalue estimates are discussed

further in Section 5.1.

While the largest eigenvalue estimate is still needed, it is much easier to obtain. For example, when A is

an M-matrix, the Gershgorin theorem can be applied to get a fairly sharp upper bound on the largest ei-

genvalue. When the M-matrix is scaled to have unit diagonal entries, the Gershgorin estimate is often just
the number �2� for the largest eigenvalue. For non-M-matrices, it is possible to estimate the eigenvalue using

a small number of Lanczos or conjugate gradient iterations. In many cases, this estimate is required

elsewhere in the code and so is readily available. In fact, most of our numerical results are generated using

smoothed aggregation algebraic multigrid. Smoothed aggregation already requires the largest eigenvalue

estimate, so there is no additional parameter estimation cost associated with the polynomial smoothers.

One somewhat subtle issue is that polynomial methods are very sensitive to an under-estimate of the largest

eigenvalue but not too sensitive to an over-estimate. Thus, we recommend scaling the estimate by a

small factor because most computational methods (e.g., Lanczos) give lower bounds to the largest eigen-
values.

M. Adams et al. / Journal of Computational Physics 188 (2003) 593–610 601

4. Performance analysis

For the most part, polynomial relaxation is not seriously used within the multigrid community. This is

largely due to the good smoothing properties of Gauss–Seidel and the parameter estimation required by

polynomial methods. Gauss–Seidel�s advantages are easily seen by examining multigrid convergence rates

for the standard 5-point approximation to the Laplacian on two-dimensional structured grids. The con-

vergence rates shown in Table 1 are well known and correspond to using two-level standard geometric

multigrid. The superiority of Gauss–Seidel is fairly evident if it is assumed that k Gauss–Seidel steps cost
roughly the same as the application of a kth degree polynomial smoother. In particular, multigrid using 1

step of red-black Gauss–Seidel requires only 20 iterations while using a damped Jacobi smoother (equiv-

alent to a 1 step Chebyshev polynomial) requires 53 iterations (2.5 times larger). This strong Gauss–Seidel

performance combined with the freedom from parameter estimation have left polynomial methods

somewhat ignored.

On closer examination of Table 1, it seems that the situation is not quite so bleak for polynomial

schemes. If we look at the 2-step methods, red-black Gauss–Seidel smoothing requires 11 iterations while

Chebyshev requires 19, a somewhat smaller ratio. Further, 2 steps of lexicographical Gauss–Seidel requires
16 iterations (only 3 less than Chebyshev). It could certainly be argued that comparisons with lexico-

graphical Gauss–Seidel are more representative than comparisons with red-black Gauss–Seidel as it is not

common practice to color Gauss–Seidel smoothers. This is, in part, due to the potentially poor cache

performance of multi-color orderings. Of course, our focus is not to advocate the application of polynomial

smoothers to structured grid Poisson problems on serial computers. Gauss–Seidel works extremely well in

this situation. Our discussion is intended to show that even in the serial structured environment the price for

using polynomial smoothers is not as high as commonly believed.

A comparison between polynomial and Gauss–Seidel methods must also consider computational work.
On close inspection, the cost is not identical for k-step Gauss–Seidel and k-degree polynomial methods.

Specifically, a polynomial smoother can easily skip the first matrix–vector product when a zero initial guess

is present. A zero guess occurs when pre-smoothing on coarse grids within a multigrid V cycle and when

pre-smoothing on the finest grid when multigrid is used as a preconditioner. 4 This means that a 2nd degree

polynomial would only require one matrix–vector product on each grid level. Gauss–Seidel method can

also take advantage of a zero guess by suppressing all calculations involving information that has not yet

been updated. This corresponds to savings of half a matrix–vector product. This means that 2 steps of

Gauss–Seidel require about one and a half matrix–vector products on each level. However, Gauss–Seidel
smoothers can take advantage of the zero initial guess only if lower and upper triangular parts of the matrix

can be accessed inexpensively. This is possible when the lower triangle, upper triangle and diagonal of the

matrix are stored separately. Unfortunately, many commonly used sparse storage formats do not support

this and so in this case the Gauss–Seidel method can not take advantage of a zero initial guess. When all of

these factors are considered together, the gap between Gauss–Seidel and polynomial methods is not nearly

as great as on first inspection.

While minimizing run time is our primary focus, there are two significant software advantages to

polynomial smoothers when developing numerical libraries/packages. First, smoothing properties on
multiple processors are identical to the one processor case. In contrast, Processor Block Gauss–Seidel

smoothing rates typically deteriorate with increasing number of processors, and Parallel Block Multi-color

Gauss–Seidel requires different orderings depending on the number of processors. Second, polynomial

smoothers only rely on matrix–vector products. These matrix–vector products are usually optimized by

application users as well as by any third party package which might be used to produce an outer Krylov

4 This is fairly common place especially within algebraic multigrid codes.

602 M. Adams et al. / Journal of Computational Physics 188 (2003) 593–610

method. Thus, while Gauss–Seidel methods require special matrix kernels and formats for optimal per-

formance, efficient polynomial methods have no such requirements and easily take advantage of often

already existing optimized matrix–vector products. Table 2 summarizes the advantages and disadvantages

of the smoothers that have been discussed.

5. Numerical studies

To study the behavior of the polynomial smoothers, three application areas are considered. The first

problem (Section 5.2) is the Poisson equation

r2u ¼ f;

where u is a scalar valued function on the unit cube with Dirichlet boundary conditions. The second

problem (Section 5.3) is the linear elasticity

ðkþ lÞrðr 	 uÞ þ lr2u ¼ f;

where k and l are the Lam�ee parameters and u is a vector valued function of displacements.
The third problem (Section 5.4) corresponds to an eddy current formulation of Maxwell�s equations

r�r� uþ rðx; y; zÞu ¼ f;

where rðx; y; zÞ is the conductivity of the material and u is a vector valued function corresponding to the

electric field.

The smoothed aggregation multigrid method [22] is used for the Poisson and for some of the elasticity

problems. Since this multigrid method requires an estimate of the spectral radius of the matrix, this estimate

can be reused within the polynomial smoothers without additional expense if the same scaling is used for

the prolongation smoother and the multigrid smoother (e.g., diagonal). The solver is conjugate gradient
preconditioned with one iteration of V-cycle multigrid. To ensure symmetry of the preconditioner, either

symmetric Gauss–Seidel is employed for pre and post smoothing or the same polynomial is invoked for

both pre and post smoothing. When an initial guess is not present, the polynomial smoothers omit the first

matrix–vector product. It is not possible to efficiently omit work for the Gauss–Seidel method as the al-

ready existing matrix formats do not separately store the upper and lower parts of the matrix. All MLS

results use the lowest degree MLS polynomial which is 4. All parallel data was obtained using the ASCI

Red machine at Sandia National Laboratories.

For Maxwell�s equations a different algebraic multigrid method is used [4,18]. This scheme uses a 2-step
distributed relaxation smoother. Step one consists of applying either symmetric Gauss–Seidel or polyno-

Table 2

Summary of trade-offs between Gauss–Seidel and polynomial smoothers

Gauss–Seidel Polynomial

Convergence Excellent smoothing Good smoothing with higher order

Parameters None needed Largest eigenvalue estimate

Parallel Complex code for block coloring and high efficiency.

Sub-optimal smoothing for local Gauss–Seidel.

Trivial

Mflops High rates require special code, block multi-color can

have poor cache utilization

Trivial

Data neutrality Requires special kernel for good performance Trivial

Zero guess 1
2
matrix–vector product saved with special code

requiring particular matrix storage

1 Matrix–vector product saved trivially

M. Adams et al. / Journal of Computational Physics 188 (2003) 593–610 603

mial smoothing. Step two corrects this solution by projecting a residual equation into the kernel or null

space of the curl operator and then applying either polynomial or symmetric Gauss–Seidel smoothing to

the projected operator. The details of this smoother can be found in [14]. For this paper, it is sufficient to

understand that this distributed relaxation ultimately depends on either Gauss–Seidel or polynomial

methods. Conjugate gradient is again employed as an outer iteration. To maintain symmetry, the dis-

tributed pre-smoothing operates on the original operator followed by the projected system while the post-

smoothing operates first on the projected system. The second system within the smoother always starts with

a zero initial guess while the first system has a zero initial guess only during the pre-smoothing.

5.1. Eigenvalue estimate sensitivity

We investigate the sensitivity of the polynomial methods to eigenvalue estimates on a truncated cone
linear elasticity problem with 21,600 degrees of freedom. Fig. 3 shows the problem which is meshed with

first order mixed hexahedral elements and is fixed at the base and loaded at the other end. In these ex-

periments, we use 100 iterations of the conjugate gradient method to compute a relatively accurate estimate

kest of the largest eigenvalue. (In practice, we have found that 5 or 10 iterations to be adequate for most of

the problems that we have encountered.) We then compare the number of iterations to converge to the

solution using various perturbations of kest for the largest eigenvalue. For Chebyshev polynomials a lower

eigenvalue, k�, is also needed to delimit the low and high frequencies. The k� estimate is also perturbed in

these experiments. The data in Table 3 shows that convergence is not very sensitive to the k� used for the
lower end of the high frequency spectrum. The data also illustrates that the Chebyshev smoothers are very

sensitive to underestimating the highest eigenvalue. This is expected because Chebyshev polynomials lose

their effectiveness rapidly in the part of the spectrum above the point at which they are optimal. For the

remainder of this paper, we estimate the largest eigenvalue by using 10 steps of conjugate gradient and then

boosting it by a factor of 1:1 (i.e., kmax ¼ 1:1kest), and take k� ¼ kmax=30.

Fig. 3. Deformed shape of cone problem.

604 M. Adams et al. / Journal of Computational Physics 188 (2003) 593–610

5.2. Poisson equation

Table 4 gives the iteration counts and solve times required to reduce the initial residual by 106 for
Poisson�s equation on the unit cube with Dirichlet boundary conditions. This data shows that the second

order Chebyshev smoother and the Processor Block Gauss–Seidel (indicated by B-SGS in Table 4) give

almost identical convergence rates and solve times. While the MLS convergence is fine, the times are greater

because the lowest degree MLS polynomial is 4 which is over-kill for this problem (i.e., too much

smoothing is done for this simple problem).

5.3. Linear elasticity

The next test problem is that of an automotive wheel modeled with triangular shell elements (data

courtesy of Charbel Farhat). The problem has 59,490 degrees of freedom (dof). A detail of the associated

mesh is shown in Fig. 4. Table 5 shows the iteration counts and total times required to reduce the residual

by a factor of 106 for the shell problem (‘‘SHELL’’), and for two finite-difference discretizations of an
elasticity problem associated with atomic positions in nanostructures (‘‘HELIX’’, data courtesy of Stefan

Goedecker). The latter problem is singular, with kernel dimension of 6 and many eigenvalues very close to

zero. Performance of the multigrid using one step of the MLS smoother and 2 steps of symmetric Gauss–

Seidel is compared on a single 1 GHz Pentium III processor. The data shows that on a serial machine the

multigrid iteration using Gauss–Seidel smoother beats the one using MLS smoother (fourth degree poly-

nomial) by a small margin in terms of computation time.

The next elasticity problem is a series of thin concentric spheres enclosed in a cube of ‘‘soft’’ material

(with symmetric boundary conditions so that only one octant need be modeled). The elements are first

Table 4

Iterations and run times to solve the Poisson equation

Number of elements Procs Smoother Iterations Time (s)

1293 16 1 B-SGS 11 18.0

2nd order Chebyshev 10 17.1

MLS 13 32.7

2213 121 1 B-SGS 17 20.4

2nd order Chebyshev 15 18.7

MLS 13 33.7

3853 1024 1 B-SGS 19 19.5

2nd order Chebyshev 15 17.5

MLS 14 29.3

B-SGS indicates Processor Block Gauss–Seidel.

Table 3

Sensitivity of fourth order Chebyshev smoother to eigenvalue estimates

kmax k� Chebyshev

1:1kest kest=18:9 34

1:1kest kest=37:1 31

1:1kest kest=109:8 30

1:0kest kest=109:8 28

:9kest kest=109:8 73

Total iterations to reduce initial residual by 6 orders of magnitude.

M. Adams et al. / Journal of Computational Physics 188 (2003) 593–610 605

order mixed hexahedral elements. The sphere is composed of seventeen alternating layers of hard and soft

materials. Table 6 shows a summary of the constitution of the two material types. The loading and

boundary conditions are an imposed uniform displacement (down), on the top surface. Fig. 5 shows the

deformed shape of the 79,679 dof version of the problem. The mesh is parameterized and the number of
processors is selected to keep about 40 K dof per processor. Each successive problem has one more layer of

elements through each of the seventeen shell layers and in the outer soft domain. A similar refinement is

done in the other two directions. This study uses ten versions of this problem ranging in size from about 80

K to about 76 M dof. In this example, a geometric multigrid method is used as a preconditioner for

conjugate gradient [2].

Fig. 6 shows iteration counts plotted against number of processors for first and fourth order Chebyshev

polynomial smoothers, the MLS smoother, and one iteration of Parallel Block Multi-color Gauss–Seidel

(symmetrized by reversing the order of the equations in the post smoothing step). The data shows that the
iteration counts are about constant for each method as the problem size is increased and that Gauss–Seidel

is more effective than a first order Chebyshev smoother in reducing the residual. Fig. 7, however, shows that

Fig. 4. ‘‘Shell’’ problem mesh.

Table 5

3D Elasticity problems in serial

Problem dof Smoother Iterations Time (s)

Small HELIX 52,665 SGS 21 28.1

MLS 18 28.7

Large HELIX 210,489 SGS 22 124.2

MLS 19 129.9

SHELL 59,490 SGS 18 18.4

MLS 19 20.2

SGS indicates symmetric Gauss–Seidel.

Table 6

Concentric spheres model materials

Material Elastic modulus Poisson ratio

Soft 10�4 0.49

Hard 1 0.3

606 M. Adams et al. / Journal of Computational Physics 188 (2003) 593–610

the polynomial smoothers are faster, especially as the degree of parallelism increases. Fig. 8 shows the

Megaflop rates per processor. This data illustrates the main disadvantage of Gauss–Seidel, namely that the

flop rate per processor decreases as the number of processors increases. The flop rates for the polynomial

smoothers decrease only slightly as almost all the work is in highly optimized matrix–vector product

kernels.

5.4. Eddy current formulation of Maxwell’s equations

For Maxwell�s equations we consider an application arising from modeling the Z-pinch machine at
Sandia [4]. In this case, r varies from 10�3 to 103 and the problem includes both Dirichlet and Neumann

boundary conditions. A picture of the computational domain of interest is given in Fig. 9. Table 7 gives

Fig. 5. Deformed shape of concentric spheres problem.

Fig. 6. Number of iterations using geometric multigrid with polynomial smoothers and Gauss–Seidel smoothers on concentric spheres

problem.

M. Adams et al. / Journal of Computational Physics 188 (2003) 593–610 607

iterations and run time using both Processor Block SOR and polynomial methods within the distributed

smoother. Without damping (not shown here for multiple processors), multigrid using Processor Block

Gauss–Seidel does not converge on four or more processors. While damping improves robustness, it can

degrade the overall smoother performance. This is seen in Table 7 where a damping parameter is chosen

experimentally based on the number of processors. 5 In particular, the multigrid method degrades

Fig. 7. Run time using geometric multigrid with polynomial smoothers and Gauss–Seidel smoothers on concentric spheres problem.

Fig. 8. Megaflop rates using geometric multigrid with polynomial smoothers and Gauss–Seidel smoothers on concentric spheres

problem.

5 The single processor run does not use any damping.

608 M. Adams et al. / Journal of Computational Physics 188 (2003) 593–610

noticeably as the damped version does not perform as well as the undamped version. By contrast, the

polynomial smoothers perform well even when many processors are employed. It should be noted that the

iteration growth using the polynomial smoothers is due to the somewhat poor approximation property of

the grid transfers. A new algebraic multigrid variant has been developed which partially addresses this
problem [3]. Overall, the Chebyshev smoother is more than twice as fast as the Processor Block SOR

smoother on the larger simulations.

6. Conclusions

We have shown that polynomial smoothing within a multigrid method may be preferable to traditional

Gauss–Seidel smoothing for parallel unstructured grid problems corresponding to positive semi-definite
matrices. They are easy to implement and integrate within existing codes, perform identically in serial and

in parallel, and require only a well-tuned matrix–vector product kernel. By contrast Gauss–Seidel methods

are problematic. Parallel Block Multi-color Gauss–Seidel can be difficult to implement and will run at

slower Megaflop rates than polynomial methods. When many processors are used, Processor Block (or

local) Gauss–Seidel methods often suffer severe convergence degradation (especially for non-M matrix

applications). Experiments have been shown from three different codes and from three different application

areas. The results illustrate that polynomial smoothers are very competitive in serial and out-perform

Gauss–Seidel smoothers in parallel.

Fig. 9. Idealized Zpinch picture.

Table 7

Iteration counts and times (s) for Maxwell�s equations

Procs Number of

elements

Dis. B-SSOR Dis. 4th order Chebyshev Dis. MLS

Iter Time Iter Time Iter Time

1 18,720 15 60.2 21 90.7 27 98.1

20 149,760 71 138.8 37 69.8 46 73.1

50 508,560 61 173.2 31 86.1 36 85.4

160 1,608,480 86 311.5 40 142.1 49 154.0

400 4,068,480 95 652.6 43 316.5 53 346.5

�Dis.� indicates 2-stage distributed relaxation using either Processor Block symmetric SOR (B-SSOR), Chebyshev or MLS in both

stages.

M. Adams et al. / Journal of Computational Physics 188 (2003) 593–610 609

References

[1] M.P. Adams, A distributed memory unstructured Gauss–Seidel algorithm for multigrid smoothers, in: ACM/IEEE Proceedings of

SC01: High Performance Networking and Computing, 2001.

[2] M.F. Adams, J. Demmel, Parallel multigrid solver algorithms and implementations for 3D unstructured finite element problem,

in: ACM/IEEE Proceedings of SC99: High Performance Networking and Computing, Portland, Oregon, November, 1999.

[3] P. Bochev, C. Garasi, J. Hu, A. Robinson, R.T. Ro, An improved algebraic multigrid method for solving Maxwell�s equations,

Sandia National Laboratories Technical Report # 2002-8222, 2003, to appear.

[4] P. Bochev, J. Hu, A. Robinson, R. Tuminaro, Towards robust 3D Z-pinch simulations: discretization and fast solvers for

magnetic diffusion in heterogeneous conductors, Elec. Trans. Numer. Anal. 15 (2003).

[5] A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comput. 31 (1977) 333–390.

[6] M. Brezina, Robust iterative solvers on unstructured meshes, Ph.D. Thesis, University of Colorado at Denver, Denver, CO, 1997,

pp. 80217–83364.

[7] M. Brezina, SAMISdat(AMG) version 0.98-User�s Guide, 2002.

[8] M. Brezina, C.I. Heberton, J. Mandel, P. Van�eek, An iterative method with convergence rate chosen a priori, UCD/CCM Report

140, Center for Computational Mathematics, University of Colorado at Denver, February 1999. Available from http://www-

ath.cudenver.edu/ccmreports/repl40.ps.gz.

[9] W.L. Briggs, V.E. Henson, S. McCormick, A Multigrid Tutorial, second ed., SIAM, Philadelphia, 2000.

[10] G.H. Golub, C.F.V. Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, 1996.

[11] W. Hackbusch, Multigrid Methods and Applications, Computational Mathematics, vol. 4, Springer, Berlin, 1985.

[12] W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations, Springer, New York, 1994.

[13] V. Henson, U. Yang, BoomerAMG: A parallel algebraic multigrid solver and preconditioner, Technical Report UCRL-JC-

139098, Lawrence Livermore National Laboratory, 2000.

[14] R. Hiptmair, Multigrid method for Maxwell�s equations, SIAM J. Numer. Anal. 36 (1998) 204–225.

[15] E. Isaacson, H.B. Keller, Analysis of Numerical Methods, Wiley, New York, 1966.

[16] A. Jameson, T.J. Baker, Multigrid solution of the Euler equations for aircraft configurations, AIAA Paper No. 84-0093, 1984.

[17] A. Jameson, W. Schmidt, E. Turkel, Numerical solution of the Euler equations by finite volume methods using Runge–Kutta

time-stepping schemes, AIAA Paper No. 8I-1259, 1981.

[18] S. Reitzinger, J. Sch€ooberl, An algebraic multigrid method for finite element discretizations with edge elements, Numer. Linear

Algebra Appl. 9 (2002) 223–238.

[19] K. St€uuben, U. Trottenberg, Multigrid methods: fundamental algorithms, model problem analysis and applications, in: W.

Hackbusch, U. Trottenberg (Eds.), Multigrid Methods, Lecture Notes in Mathematics, vol. 960, Springer, Berlin, 1982, pp. 1–176.

[20] U. Trottenberg, C. Oosterlee, A. Sch€uuller, Multigrid, Academic Press, London, 2001.

[21] P. Van�eek, M. Brezina, J. Mandel, Convergence of algebraic multigrid based on smoothed aggregation, Numerische Mathematik

88 (2001) 559–579.

[22] P. Van�eek, J. Mandel, M. Brezina, Algebraic multigrid based on smoothed aggregation for second and fourth order problems,

Computing 56 (1996) 179–196.

[23] P. Van�eek, M. Brezina, R. Tezaur, Two-grid method for linear elasticity on unstructured meshes, SIAM J. Sci. Comput. 21 (1999)

900–923.

[24] P. Van�eek, J. Mandel, M. Brezina, Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems,

Computing 56 (1996) 179–196.

[25] R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Hills, NJ, 1962.

[26] P. Wesseling, An Introduction to Multigrid Methods, Wiley, Chichester, 1992, Reprinted by www.MGNet.org.

610 M. Adams et al. / Journal of Computational Physics 188 (2003) 593–610

http://www-ath.cudenver.edu/ccmreports/repl40.ps.gz
http://www-ath.cudenver.edu/ccmreports/repl40.ps.gz

	Parallel multigrid smoothing: polynomial versus Gauss-Seidel
	Introduction
	Parallel Gauss-Seidel smoothing
	Parallel block multi-color Gauss-Seidel
	Processor block Gauss-Seidel

	Polynomial smoothers
	Chebyshev polynomials
	MLS: multilevel smoother polynomial
	Eigenvalue estimates

	Performance analysis
	Numerical studies
	Eigenvalue estimate sensitivity
	Poisson equation
	Linear elasticity
	Eddy current formulation of Maxwell’s equations

	Conclusions
	References

